References:
Burdon CA, Hoon MW, Johnson NA ,Chapman PG, O’Connor HT (2013) The effect of ice slushy ingestion and mouthwash on thermoregulation and endurance performance in the heat. International Journal of Sport Nutrition and Exercise Metabolism.23 458-469
Ihsan M, Landers G, Brearley M, Peeling P (2010) Beneficial effects of ice ingestion as a precooling strategy on 40-km cycling time-trial performance. International journal of Sports Physiology and Performance. 5 140-151
Maley MJ, Minett GM, Bach AJE, Zietek SA, Stewart KL, Stewart IB (2018) Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity. PLoS ONE 13(1): e0191416. https://doi.org/ 10.1371/journal.pone.0191416
Mejuto G, Chalmers S, Gilbert S, Bentley D (2018) The effect of ice slurry ingestion on body temperature and cycling performance in competitive athletes. Journal of Thermal Biology 72: 143-147
Naito T, Ogaki T. (2016) Pre-cooling with intermittent ice ingestion lowers the core temperature in a hot environment as compared with the ingestion of a single bolus. Journal of Thermal Biology. 59 13-17.
Siegel R, Mate J, Brearley M.B, Watson G, Nosaka K, Lairsen P.B (2010) Ice slurry ingestion increases core temperature capacity and running time in the heat. Medicine and science in sports and exercise. 42(4) 717-725
Stevens CJ, Dascombe B, Boyko A, Sculley D, Callister R (2013) Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat. Journal of Sport Sciences. 31(12) 1271-1279
Takeshima K, Onitsuja S, Xinyan Z, Hasegawa H (2017) Effect of the timing of ice slurry
ingestion for precooling on endurance exercise capacity in a warm environment. Journal of Thermal Biology. 65 26-31
Zimmermann M, Landers GJ, Wallman KE (2017) Crushed ice ingestion does not improve female cycling time trial performance in the heat. International Journal of Sport Nutrition and Exercise Metabolism 26: 67-75